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Abstract 

The scope of the application of Bijvoet differences 
to the direct determination of triple-product phases 
is extended to the general case of an arbitrary number 
of non-identical anomalous scatterers. Apart from an 
improved procedure for the estimation of the hyper- 
axis contributions of the double Patterson function 
to its Fourier coefficients, an additional estimate of 
spatial contributions is described. For small and 
medium-sized structures the adopted approach is 
expected to lead to accurate results. The application 
to the structure determination of calcium trilactate 
trihydrate is given as an example. 

Introduction 

Kroon, Spek & Krahbendam (1977) proposed that a 
complex double Patterson function (with triple prod- 
ucts as Fourier coefficients) could be looked on as 
being a 'structure' containing a number of 'anomalous 
scatterers', of which the one with the largest scattering 
power is situated at the origin. Therefore the problem 
of finding a priori triple-product phases from Bijvoet 
inequalities is analogous to the problem of finding 
structure-factor phases from the same experimental 
data when not all anomalous scatterers are localized. 
Following the method introduced simultaneously by 
Peerdeman & Bijvoet (1956), Ramachandran & 
Raman (1956) and Okaya & Pepinsky (1956), Kroon, 
Spek & Krabbendam (1977) obtained the following 
expression: 

sin q3h'k-- 4~,k[~(l~,k[" , 2 +  _ .  211/2 (1) 
- -  ~h,k J 

=~(~0h.k--~0--h.-k), ~0h,k is the phase of the where ~h ,k  1 

triple product ~h,k = FhFkF_h-  k and ~'h,k" is a contribu- 
tion to the imaginary part of r~,k originating from 
anomalous scattering. To obtain satisfactory results 
a scaling procedure appeared to be necessary in (1) 
in case r~,k is estimated only from the origin contribu- 
tion of the double Patterson function. In a subsequent 
paper, Heinerman, Krabbendam, Kroon & Spek 
(1978) showed that better results could be obtained 
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if more characteristics of the double Patterson func- 
tion were taken into account. Their estimation of 
double Patterson hyperaxis contributions was based 
on the resemblance of the hypersections with the 
known Patterson function. 

In this paper we shall report (1) more general 
expressions for the estimation of hyperaxis contribu- 
tions, (2) a procedure for the estimation of spatial 
contributions of the double Patterson function to r~,k 
and (3) the application of the results to the X-ray 
data of a P1 structure. 

Theory 

For a P1 structure containing anomalous scatterers, 
the normalized structure factor can be written as 

N 

Eh= ~1/2 y If(h)[ exp [2¢riSi(h)] exp (27rib. ri) 

' = "  (2) 

where g ( h ) l e x p [ 2 . M r i ( h ) ] = f ° ( h ) + f ~ + i f ' [  is the 
complex scattering factor of the ith atom (of which 
ri is the position vector), N is the total number of 
atoms in the unit cell and 

N 

ah = Y~ If(h)[ 2. 
i=1 

The symbols h, k and h + k will be used hereafter to 
denote either h, k and h + k  or -h ,  - k  and - h - k  
respectively. After defining 

ao m = (OthOtkOtn+ k)- 1/21f (h)£(k)fm(h + k)l 

x cos  {2cr [8 , (h )+S j ( k )+Sm(h+k) ] }  (3) 

and analogously bum with the cosine replaced by a 
sine, we obtain for a normalized triple product: 

~'h.k =-- EhEkE-h-k= OR + iO, + Sg + iS, (4) 

where 
N N 

OR = ~., am, 0 i  = ~, bi. 
i=1 i=1 

N N N 

S R  = ~ ~ Z aijm exp {2wi[h. (r~-rm) 
i=1 j=l  r a = l  

not i=j=m 

+ k .  (r j-rm)]} 
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and 
N N N 

St = ~ ~ ~ b~j,,, exp {2rri[h. ( r~-r , . )  
i = 1  j = l  m = l  

n o t  i= j=m 

+ k .  (r j-rm)]}.  

Using the same definitions we easily obtain for the 
Friedel-related triple product 

7"-h,--k ~" E-hE-kEh+k = OR + iOt + S * +  iS*. (5) 

If the imaginary part of St is neglected J i m ( S t ) =  0], 
it follows from (4) and (5) that rh,k--r*h_k = 
2 i[ Ot + Re(St )], which is a purely imaginary quantity. 
Therefore rh,k and r*--h-k will form a triangle in the 
Argand diagram with one side parallel to the 
imaginary axis. Under these conditions (1) can be 

I I  _ _  applied with rh,k-- Ot + Re (St) leading to two poss- 
ible values for flu,k; the ~, (o r -  q~) ambiguity may be 
resolved by choosing the angle nearest to zero. In the 
sequel we will show how to obtain satisfactory esti- 
mates for " T h , k -  

Recently Hauptman (1982) and Giacovazzo (1983) 
also integrated anomalous diffraction with the tech- 
niques of direct methods. Following the suggestion 
of Heinerman et al. (1978), they first derived the joint 
probability distribution (j.p.d.) of the six normalized 
structure factors Eh, Ek, E-h-k, E-h, E-k and Eh+k. 
After fixing the magnitudes of the structure factors 
and integrating with respect to all the phases, subject 
to the condition Ch+~Ok+~_h_k = Ch.k, they both 
obtained an expression for the conditional probability 
distribution of the triple-product phase ~h.k, given 
the magnitudes of the six structure factors mentioned 
before. Both authors arrive at the same yon Mises 
distribution of which the mode can be anywhere 
between zero and 2rr. This is in sharp contrast to the 
results of our approach which can only yield phase 
indications in the first or fourth quadrant of the 
Argand diagram. 

It remains to be seen whether the approximations 
made in both cases account for the differences, or 
whether the use of six individual structure-factor 
amplitudes instead of two triple-product amplitudes 
is an essential improvement, as suggested by 
Hauptman. 

Estimation of  Re (Si) 

From (4) we obtain 

Re (Si) = Hh + Hk + Hh+k + Shk 

where 

Hh = ~_, Z' boj cos [27rh. ( r , - r j ) ]  
i j 

Hk = ~, ~,' boi cos [2zrk. ( r i - r j ) ]  
i j 

Hh+k = E E' b,q cos [2~r(h + k ) .  ( r , - r  j)]  
i j 

(6) 

Shk=~,~,~, ' bo,, cos {27r[h. ( r , - rm)  
i j m 

+ k .  ( r j - rm)]}  

and where 

and 

N N 

EE'=E E 
i j i = l  j = l  

i ~ j  

EEL'= 
i j m 

N N N 

E E L  
i = 1  j = l  m = l  

i # j ^ i # m ^ j # m  

( A ) Hyperaxis contributions 

Following Heinerman et al. (1978), Hh, Hk and 
Hh+k in (6 )  can be estimated from the Fourier 
coefficients of an origin-removed Patterson function 
from which the effects of anomalous dispersion are 
eliminated. For example, 

Hh "" ½Ah( Ehl 2 + IE-hr- 2) (7) 

where A h is a scaling constant which can be deter- 
mined by a least-squares analysis. Hk and Hh÷k are 
estimated in the same way. The calculations are given 
in Appendix I and the result is 

~ E' ,t!h)h 
i 

Ah = y. ~, [dljh)] 2 (8) 
i j 

w h e r e  d (h) h 1 o = a  f (h ) f j (h ) lcos{2rr[8 , (h ) - ,S j (h )]} .  
For Ak and Ah+k w e  find analogous expressions 

with d~  ) replaced by d~ f '  and d~ h÷k) respectively and 
bijj replaced by boi and bio respectively. It must be 
noted that, contrary to the results of Heinerman et 
al. (1978), three distinct scaling factors are needed 
for each triple product, one for each hyperaxis. The 
main reason for this difference is that in the current 
approach it is possible to include non-identical 
anomalous scatterers besides non-identical lighter 
atoms. This implies the estimation of a complete sum 
of cosine terms instead of a few individual cosines 
and ultimately leads to scaling factors which depend, 
not only on the contents of the unit cell, but also on 
[hi, Ikl and ]h + k I. 

( B ) Spatial contributions 

The threefold summation Shk in (6) corresponds to 
contributions from spatial peaks in the double Patter- 
son function. In all previous work this part of r~,k 
was neglected, but in Appendix II it is shown that 
Shk  c a n  also be estimated. The procedure is based 
on the fact that (IEhEkE_h_klcos ~h.k) and 
([E-hE-kEh+klCOS ~-h.-k) are known if both triple- 
product phases are assumed to be distributed accord- 
ing to the Cochran distribution (Cochran, 1955). The 
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result obtained in Appendix II is 

Shk ~-- Bhk[½ EhEkE-h-k II(K1)/IO(K1) 

+ ½]E-hE-k Eh-kII, ( K2) / Io( K2) 
- OR - -½Ch(IEh 2 + [E_, ~ -  2) 

-½c (Ied E_d -2) 
- - 1 C h + k (  E h + k 2 + l E - h - k 2 - - 2 ) ]  (9) 

where 11 and Io are modified Bessel functions of order 
one and zero respectively. K~ and K2 are the K values 
of the two Friedel-related triple products, Ch, Ck and 
Ch+k are least-squares scaling constants obtained in 
the same way as Ah, Ak and Ah+k in the previous 
section and Bhk is a scaling constant obtained via a 
least-squares analysis on (9), which results in 

Z E E' bijmaij,, 
nh k __ i j m (10) 

EEE aura 
i j ra 

The expressions for Ch, Ck and Ch+k can be obtained 
from Appendix II. 

Reliability of  t@le-product phases from sine invariants 

Unique triple-product phase indications may be 
obtained from the approximate values of the sine 
invariants by choosing the phase angle nearest to 
zero. Qualitatively this approach may be seen as a 
combination of the sin ~o formula with the Cochran 
distribution function. The reliability of the resulting 
phase indication is of special interest. Apart from the 
more obvious sources of errors like non-exact experi- 
mental data and the statistical nature of the determi- 
nation of r~,k, the quality of the sine invariants will 
be determined by the validity of the approximation 
Im (S~)= 0. On the basis of the analogy between S~ 
and SR we deduce from bum ~ aura that the conditions 
for the triangle construction will be reasonably well 
fulfilled if Im (SR) is small. This indicates that the 
best results will be obtained for those triple products 
for which the Cochran distribution predicts a phase 
angle near to zero, the more so as in those cases the 
ambiguity will be resolved with more confidence. The 
usual K values (2cr3cr2-3/2lEEEI) may therefore be 
used to rank the phase indications according to their 
reliability, provided the estimation of Re (St) is 
included in the phase calculation. 

Practical results and discussion 

For the structure determination of calcium trilactate 
trihydrate (CaC9H1609.3H20; space group P1 with 
a=5 .823 ,  b=8.295,  c=8.975/~;  a=78 .39 ,  /3= 
73.61 and T = 75"19°, Z = 1), the full details of which 
will be published elsewhere (Kanters, Jansma & Pon- 
tenagel, 1986), triple-product phases were estimated 

according to the procedure given in this paper. After 
Lp correction of all 2982 observed intensities within 
the Cu K s  limiting sphere (1545 of the hkl type and 
1437 of the type hkl), a scale and temperature 
factor were obtained from a Wilson plot and the 
complete set of F values was normalized to E values. 
Real and imaginary parts of anomalous-dispersion 
corrections for Ca 2÷ and O were taken from Inter- 
national Tables for X-ray Crystallography (1974): 
f~a=0.3 ,  f~a=  1.4, f~)=0,  f ~ = 0 . 1 .  The 188 largest 
E values of the hkl type were transferred to the 
MULTAN78  routine SIGTWO (Main, Hull, Lessin- 
ger, Germain, Declercq & Woolfson, 1978) resulting 
in 1112 pairs of Friedel-related triple products with 
K values ranging from 1.58 to 6.03. Subsequently, 
three different sets of sin -c~¢ ~Oh, k values were derived 
with the sin ~0 formula: 

case 1: r~.k estimated from origin contributions of 
V! _.. O i  . the double Patterson only; i.e. ~'~,k , 

case 2: r~,k estimated from origin and hyperaxis con- 
tributions; i.e. ~'~,k = Ot + Hh + Hk + Hh+k; 

case 3: " rh.k estimated from origin, hyperaxis and 
spatial contributions; i .e.  r'~,k = Oz + Hh + Hk + 
Hh+k + Shk • 

Sines calculated larger than 1 and smaller than -1  
were set equal to 1 and -1  respectively. -¢a~c ~0h,k were 
obtained by choosing the phase angle nearest to zero. 
In all calculations the 'observed' normalized structure 
factors were used. In those cases where IE-hl was not 
available from experiment, levi was used instead of 
I E-d. All calculated triple-product phases were com- 
pared with their -true ~0h.k values which were obtained by 
averaging true true ~Ph,k and --~-h,-k- The latter values were 
calculated from the final atomic coordinates as 
obtained from the structure determination (in the 
correct enantiomorph). 

To show the influence of the different estimates for 
Re (St) we refer to Table 1 where it can be seen that 
employing extra information about the double Patter- 
son function does lead to more accurate triple- 
product phases. 

In case 1 most of the absolute values of sin -calc ~ h , k  

appeared to be larger than 1, leading to an excessive 
number of phases at 90 and 270 ° . The accuracy of 
these results leaves much to be desired, although the 
majority of the phases are calculated in the correct 
quadrant of the Argand diagram. This already indi- 
cates that an extra estimate for Re ($I), which can 
be considered as an individual scaling for each sine 
invariant, will lead to better triple-product phases. 
Comparison of the results of case 2 with those of case 
1 shows that this is indeed the case. The extra esti- 
mates for Shk in case 3 clearly improve the qS~,~ ~ values 
even more, as can be seen from Table 1. 

The triple-product phases are calculated slightly 
too close to zero on the average: ( -~1¢, ~%,k ? = 17 ° while 

- t r u e  ( ~Ph.k )=  24 °- From (1) we see that such a bias may 
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be caused by the application of a wrong scale and/or  
temperature factor. 

The results of Table 1 were obtained by averaging 
over all 1112 triple products. In order to show that 
the Cochran K value can be used to rank the calcu- 
lated phases according to their reliability, we refer to 
Table 2 where it can be seen that triple products with 
larger K values are calculated more accurately on the 
average if the estimates of hyperaxis and spatial con- 
tributions to '7"h, k are taken into account. 

Concluding remarks 

The use of 'Bijvoet differences' between Friedel- 
related triple products leads to estimates for the sine 
invafiants. By combining these results with conven- 
tional direct methods (i.e. the Cochran distribution) 
we are able to obtain unique phase indications for 
triple products anywhere between -½~- and 4-½It. The 
restriction to the fight-hand side of the Argand 
diagram is a direct consequence of the fact that appli- 
cation of conventional direct methods to triple prod- 
ucts leads to positive estimates for the cosine 
invafiants. Anticipating future developments, we 
therefore expect that application of our procedure to 
quartet and higher-order invariants will lead to 
unique phase indications anywhere between 0 and 
2~r, provided the relevant cross terms are taken into 
account. 

As to the reliability of the results, we have to stress 
that the present procedure is of an algebraic nature, 
in which the assumption Im (S~) = 0 and the derived 
estimations of Re (S~) play a central role. In order 
to obtain an estimate of the variances, one ought to 
calculate the j.p.d. P(Sr, SR) but such a calculation 
is outside the scope of this paper. 

Meanwhile it seems reasonable to expect that the 
results will be more accurate if (i) N is small, (ii) a 
small number of powerful anomalous scatterers is 
present and (iii) the Bijvoet differences are large. 

As a rule we expect our method to fail for large 
structures, not only because the ~, (w - ~) ambiguity 
will not be resolvable satisfactorily (OR/ISRI~ 0), but 
also because the approximation Im (S~)--0 will be 
less adequate (OI/IS~ ~0) .  Preliminary calculations 
with the X-ray data of the protein ferredoxin (Sieker, 
Adman & Jensen, 1972) confirm these ideas. For small 
and medium-sized structures, however, the procedure 
leads to accurate triple-product phases even if 
observed X-ray data are used. Although the mean 
error of 23 ° for the test structure (see Table 1) does 
not seem to be an improvement compared with the 
case where all triple-product phases are assumed to 

- true be zero ((l~h.k l) = 24°), we stress that the current phase 
indications are extremely important for two reasons: 

(1) A subsequent determination of structure-factor 
phases will be greatly facilitated as no false symmetry 
is expected to be introduced. The systematic errors 

Table 1. Comparison of  the three sets of  -~c  ~h,k values 

C a s e  1: R e ( S 1 ) = 0 ;  case  2: Re(Sl)=Hh+Hk+Hh+k; case  3: 
Re  ( $ 1 ) =  Hh+nk+Hh.k+Shk. 

C a s e  1 C a s e  2 C a s e  3 

(IA~h.kl)* (°) 67 31 23 
-ealc 

(ItPh,k l) (°) 75 31 17 

, <lAeh.kl >___,, -~,c ~h.~ I" ~lff~h,k _ - t rue l )  

of the all-zero estimates for the triple-product phases, 
as normally obtained from the Cochran distribution, 
are replaced by random errors if the phase indications 
are obtained from the measured Bijvoet differences. 

(2) Most of the triple-product phases correspond 
to the correct enantiomorph thus breaking the twofold 
ambiguity in the solution of the phase problem, i.e. 
the structure determination will eventually lead 
directly to the correct enantiomorph, thus serving as 
an extra test to confirm the absolute configuration. 

APPENDIX I 

Estimation of hyperaxis contributions to Re (Ss) 

From (2) we obtain 

IEhl 2-1 = a h ' ~  ~'  If,(h)fj(h)l 
i j 

xcos {27r [~ , (h) -8 j (h)+h .  ( r , - r j ) ]}  
(I.1) 

and 

IE_hl 2 -  1 =  h'E X' ]f~(h)fj(h)l 
i j 

xcos {27r[8 , (h ) -~ j (h ) -h .  (r ,-rj)]}.  
(I.2) 

So 

½(tEh 2 + E_~[2) - 1 = Y. ~ '  d~ h) cos [2~'h. ( r , -  rj)] 
i j 

(I.3) 

where d~)=ahl[f~(h)f j (h)  cos {2w[8,(h)-Sj(h)]}.  
The right-hand side of (I.3) is analogous to Hh in 

(6) of the main text. Therefore we can estimate 

Hh ~-- Ah[½( Eh 2 + E-h i  2) -- 1]. ( I .4 )  

The scaling constant Ah is determined by minimizing 
the expected value of the squared difference between 
the left- and right-hand sides of (I.4): /2/ 

' " "(h)l [27rh (ri = 8 [bi~-Aha o j cos . - r j ) ]  0 
~A h 

(1.5) 

where the averages are performed with respect to the 
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3 . 2 < K < 3 - 6  
5 .2<K <6-0  

Table 2. Comparison of  triple-product phases (o) for two different sets of  K values 
Case 1 Case 2 Case 3 

-true -ealc -calc -calc 

22 64 74 27 28 20 14 
16 70 75 24 25 15 12 

atomic position vectors: 

~ {~i E ' ~ !  ~m [bijjblm m --(h) ' - Ahb#ja lm 
BAh j 

d ( h )  ..t_ ,4 2 ,4(h) ~/(h) 1 
- m h b l m m U  q ~Z-Xht~ij Ulma 

x ½[(cos 2~rh. ( r i -  rj + r t - r m ) )  

+(cos 2~rh. ( r i -  D - r t  +r=)) ]}  = 0. (I.6) 

The two averages in (1.6) only lead to permitted 
non-zero contributions for i = m and j = l and for 
i - - l  and j = m respectively. Therefore we obtain 

2 BAh 

a g ,1(h) ,4 l. a(h)_Ahbjiid~) -- rXhUijjt4~ji -- rXhUijjt~ ij 

A .i(h),i(h) _1_ A 2 ,4(h) ~4 (h ) ' l /  l..lht~ij wij T l-lht~ij t~ji .l j = 0 .  (1.7) 

As d~ )= d~ h) this leads to 

1 8 / ~ '  b o o  2 BAh L--F j-" [b~jwbijjbjii]-4Ah EE'i j d(h) 

+ 2A~ ~ ~ '  [d~y)]2~ =0.  (1.8) 
i j ) 

Finally we obtain for the best value of the scaling 
constant 5" h...,t!, h) 

~ iJJ  ~ lJ  

i j  
Ah--y.~,,rd(h)l 2. (I.9) 

L ~  U .! 
i j 

A P P E N D I X  II 

E s t i m a t i o n  o f  s p a t i a l  c o n t r i b u t i o n s  to  R e  ( S x )  

From (4) and (5) we obtain 

I E h E k E - h - k  COS ~ h , k ÷ q E - h E - k E h + k  COS ~ - h , - k  

= Y_, aiii + ~ ~ ~ aom cos 2"n'[h. ( r i - rm)  
i i . j  .m 

n o t  i = j ~ m  

+ k . ( D - r m ) ]  

= Y~ aiii + Y, ~' ai~ cos 27rh. ( r i - r j )  
i i j 

+ ~ Y,' a#~ cos 2¢rk. ( r i - r j )  
i j 

+Y, Y,' aiij cos 2¢r(h+k) .  ( r / - r j )  
i j 

+ ~ ~', ~' aqm cos 2¢r[h. ( r i - rm)  
i j r a  

+ k .  ( r j - rm)] .  (II.1) 

~ a,~ = OR and is known from the contents of the 
unit cell. The three double summations can be written 
as  Ch(IEd÷lE_d=-2), ½Ck(IEd+lE-d-2) and 
½G+k(IEh+d+ IE=-d 2 -  2), respectively, after appli- 
cation of the procedure given in Appendix I. Since 
the effects of anomalous dispersion are small, we 
assume that both ~Ph.k and ~-h,-k are distributed 
according to the Cochran distribution (Cochran, 
1955); after replacing the left-hand side of (II.1) by 
its expected value we obtain an approximate 
expression for the threefold summation: 

EEE' 
i j m  

aijm COS 2"rr[h. ( r i - r m ) + k .  ( r j - rm)]  

- ½IE E E_ _dI,( / Io( 

+ ½1E- E-:E:+d/I( / Io( 
-- OR - 1 C h ( I E d  + IE_d 2- 2) 

- ½c (IEd 2 + I E - d -  2) 
1 2 - Ch+KIE +d + (II.2) 

where 11 and Io are modified Bessel functions of order 
one and zero respectively, K~ and K2 are the K values 
of the two Ffiedel-related triple products, and 

uqj~ U 
i 

L ~ i j  .I 
i j 

Ck and Ch+k are analogous to Ch with a~jj replaced 
by aui and ai# respectively and _,jd ~-h) replaced by -,J'/<k) 

J J(h+k) ano aij respectively. 
With (11.2) we are able to obtain an estimate for 

&k in (6) of the main text: 

Shk = Bhk [ 'fight-hand side of (11.2)']. (I1.3) 

Analogously to the procedure given in Appendix I, 
Bhk can be found by minimizing 

( { ~  ~j ~' [bijm- BhkaUm] c°s 2qr[h " 

}) + k .  ( r j - rm)]  . (11.4) 

The calculations are straightforward and the result is 

2 ~ 2'  bijmaijm 
Bhk__ i j m (II.5) E E E  ' 2  a ijm 

i j r a  

in which all double summations over the atomic labels 
are neglected. 
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Abstract 

An algorithm is described to determine structure- 
factor phases from the estimated phases of 
(sem)invariants of any order, in a mixed mode if 
desired. The method essentially consists of a reduc- 
tion of a redundant set of linear equations by success- 
ive elimination of unknowns. The main result of the 
procedure is a set of mutually independent equations 
in which structure-factor phases are expressed as 
linear combinations of a limited number of unknowns 
(among which a suitable set of origin-defining phases 
must exist), and (sem)invariant phases of which 
(reliable) estimates are available. Application to an 
unknown P2~ structure using triple products only, 
followed by a tangent refinement, is given. From 
further tests it appeared that the method is 
preeminently expedient as a troubleshooter in intri- 
cate structure determinations. 

Introduction 

For small and medium-sized structures, the number 
of seminvariant phases (O's) which can be deter- 
mined by direct methods with a reasonable accuracy 
outreaches by far the number of structure-factor 
phases (,p's) to be determined for the calculation of 
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an interpretable E map. As seminvariants can actually 
be seen as linear combinations of structure-factor 
phases, a matrix inversion may be thought of as an 
appropriate procedure to determine structure-factor 
phases. For centrosymmetric problems this approach 
was first introduced by Cochran & Douglas (1955) 
and later amended by Vand & Pepinsky (1956). In 
essence that technique consists of two parts: (i) select 
a set of mutually independent relations from which 
the ~'s can be obtained via a matrix inversion and 
(ii) employ the relations that have not been used in 
a sensible way as a check on the plausibility of the 
obtained solution. 

Fortier, Fronckowiak, Smith, Hauptman & De Titta 
(1978) and Fortier, De Titta, Fronckowiak, Smith & 
Hauptman (1979) described a procedure which 
resembles the matrix-inversion method, but differs 
from it in the fact that the distinction between the 
steps (i) and (ii) has been removed. It consists of the 
reduction of a redundant set of special linear 
equations by successive elimination of unknowns. 
Starting with an arbitrary set of M seminvariants we 
find the following symbolic representation: 

Y'. q~k = Os ( s=  1 , 2 , . . . ,  M). (1) 
k 

Successive elimination of structure-factor phases and 
repeated substitutions in all previously obtained 
expressions leads in centrosymmetric space groups 
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